

Properties

- Sensorshaft with integrated torque and angle measurement
- Non-contact measurement system, high robustness
- "Plug & Play" solution, no additional electronics required

Performance

- Measurement range from 50 Nm to 2000 Nm
- Accuracy class 0,1 % / 0,2%
- Temperature range -40 °C ... +105 °C
- IP50
- Turning speed up to 10000 rpm
- Output Signals 0-10 V / 4-20 mA / PWM / Frequency

1. Short description

With this torque sensor the effective torque on the gauge bar can be measured bi-directionally independent from rotational speed. The sensor is delivered as a complete unit with corresponding connecting cable and key stones. The transmitting shaft, the contact-free signal pick-up and the analog signal processing are integrated into the sensor structure. No external amplifier is needed. Based on magnetic field and therefore completely non-contact measurement principle the sensor works totally maintenance-free over a wide temperature range.

2. Model Series 3000 / Series 4000

Series 3000 / Seri	es 4000	Nominal-Torque	Max. overload	Rotational Speed	
Shaft	Unit	Bi-directional (+/-)	Bi-directional (+/-)	[rpm]	
15 mm	[Nm]	50	150	40.000	
15 11111	[ft-lb]	37	111	10.000	
15 mm	[Nm]	100	150	10.000	
mm ci	[ft-lb]	74	111	10.000	
25	[Nm]	250	750	8.000	
25 mm	[ft-lb]	184	553	0.000	
25	[Nm]	500	750		
25 mm	[ft-lb]	369	553	8.000	
40	[Nm]	1000	3000	F 000	
40 mm	[ft-lb]	738	2213	5.000	
40	[Nm]	2000	3000	5 000	
40 mm	[ft-lb]	1475	2213	5.000	

3. Technical Characteristics of the Sensor

			Series 3	000	Series 4000
No.	Accuracy class ¹⁾		0,2		0,1
		Unit		Value	
1	Linearity deviation incl. hysteresis	%ME*	< ±0.2	2	<±0.1
2	Rotational Signal Uniformity (RSU)	%ME*	< ±0.2	2	<±0.1
3	Repeatability	%ME*	< ±0.0)5	<±0.05
	Output signal in general	Unit		Value	
4	Frequency range, -3dB point, Bessel characteristics	Hz		0 250	00
5	Analog signal	V		0 10)
6	Signal at torque = Zero ²⁾	V		≈ 5	
7	Signal at positive nominal torque	V		≈ 9	
8	Signal at negative nominal torque	V		≈ 1	
9	Calibration parameter	mV/Nm	≈ 4000 m	V / Measu	rement range
10	Output resistance	Ω		62	
	Effect of temperature	Unit		Value	
11	Zero point drift over temperature	%/10K		< 0.2	
12	Signal drift over temperature within operational temperature range ³⁾	%/10K		< 0.5	
	Power supply	Unit		Value	
13	Supply voltage	VDC		11 2	8
14	Current consumption (max.)	mA		150	
15	Start-up peak	mA		< 200	
16	Absolute max. supply voltage	VDC		30	
	General information	Unit		Value	
17	Degree of protection acc. to EN 60529	IP	50) (64 if req	uired)
18	Reference temperature	°C		+15 +	35
19	Operational temperature range	°C		-30 +	85
20	Storage temperature range	°C		-30 +1	00
	Nominal torque M (bi-directional)	Nm	50 100	250 500	1000 2000
21	Weight	kg	1.4	2.4	6
22	Moment of inertia round shaft	kg*mm²	5.9	59.5	626
	related to a full scale management range	•			

%ME: related to a full scale measurement range

The accuracy class implies that taken separately both the linearity deviation as well as the rotational signal uniformity
are either lower than or equal to the value of the accuracy class. The accuracy class is not to be identified with the
classification following DIN 51309 or EA-10/14.

²⁾ Zero point can be set to 5 V by pressing the Tera-button.

³⁾ The factor of transmission declines linearly up to a maximum of 0,5 % / 10K with rising temperature due to the reduction of the elasticity.

	EMI / EMC	Einheit		Wert	
	Tested Standards				
23	EN 61000-6-3: 2007	-		PASSED	
24	EN 55011: 2009 + A1: 2010 class B	-		PASSED	
25	EN 61000-6-2: 2005	-		PASSED	
26	EN 61000-4-2 (ESD) : 2009	-		PASSED	
27	EN 61000-4-3 (HF) : 2006 + A1: 2008 + A2: 2010	-		PASSED	
28	EN 61000-4-4 (BURST): 2004 + A1: 2010	-		PASSED	
29	EN 61000-4-5 (Surge): 2006	-		PASSED	
30	EN 61000-4-6: 2009	-		PASSED	
31	EN 61000-4-8: 2010	-		PASSED	
32	EN 61000-4-11: 2004	-		PASSED	
	Load limits ⁴⁾	Unit		Value	
33	Maximum measurable torque	%		110	
34	Maximum torque, related to nominal torque	%		300	
35	Ultimate torque	%	500		
36	Maximum load of key stone (Application factor 1,5)	%	180	200	200

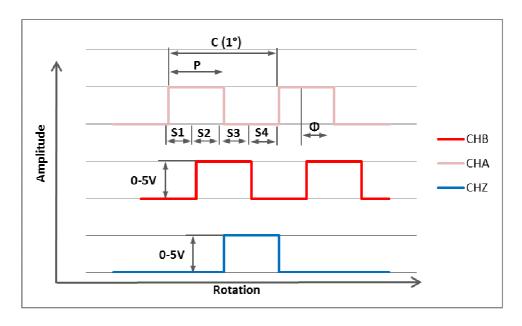
⁴⁾ Based on the non-contact measurement principle the torque sensor is quite insensitive to bending and shearing forces. Self-aligning couplings are recommanded in case of dynamic loads.

4. Available Options

4.1 Optional Signal Outputs

In addition to the analog output signal the Series 3000 und Series 4000 can also be delivered with another optional output signal as listed below.

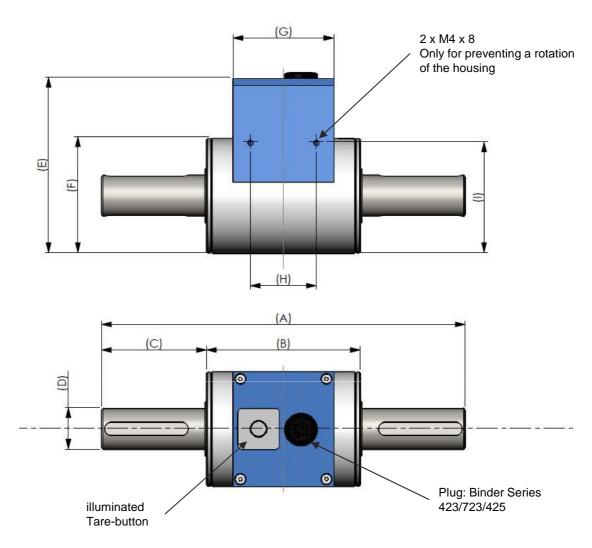
Frequency output		
Description	Unit	Value
Basic frequency	kHz	60
Measurement range	kHz	20 100
Calibration parameter	kHz/Nm	40 / Measurement range


Current output		
Description	Unit	Unit
Signal at torque = zero	mA	12
Measurement range	mA	4 20
Calibration parameter	mA/Nm	8 / Measurement range

PWM-signal output						
Description	Unit	Unit				
Carrier frequency	Hz	980				
Signal at torque = zero	%	50				
Measurement range	%	1090				
Error indication	%	95				
Calibration parameter	%/Nm	40 / Measurement range				

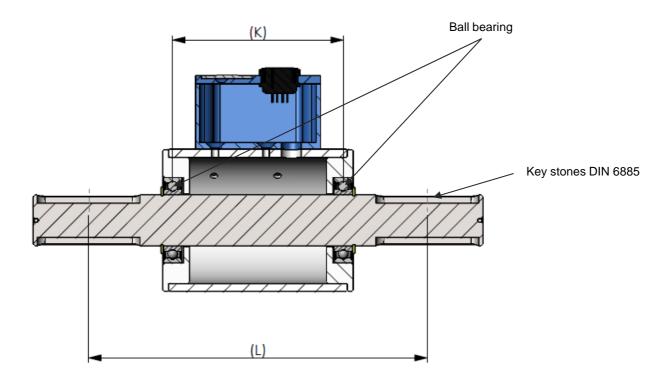
Only the analog voltage output is calibrated by default. All other output signals are adjusted according to the analog voltage output.

4.2 Optical angle sensor



Parameter	Symbol	Unit	Regular	Min.	Max.
Cycles (optical)	n		360		
Cycle error	ΔC	Degree ⁷⁾	0.8x10 ⁻²		4.2x10 ⁻²
Pulse width error	ΔΡ	Degree ⁷⁾	1.9x10 ⁻²		8.3x10 ⁻²
State width error	Δs _x	Degree ⁷⁾	1.4x10 ⁻²		8.3x10 ⁻²
Phase error	Δф	Degree ⁷⁾	0.6x10 ⁻²		4.2x10 ⁻²
Index pulse width	P_0	Degree ⁷⁾	0.25	0.17	0.33
Ch I rises after Ch B or Ch A falls	t ₁	ns	100	10	1000
Ch I rises after Ch A or Ch B rises	t ₂	ns	300	10	1000
Rise-time	t _r	ns	180		
Fall-time	t _f	ns	50		

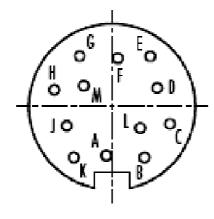
⁷⁾ Degree is with respect to the rotation.



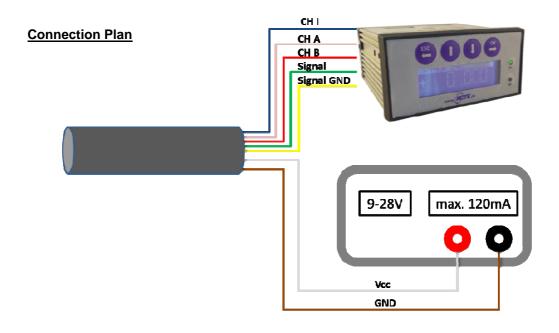
5. Dimensions

Dimensions (Dimensions (in mm):									
	Α	В	С	D	E	F	G	н	1	
50 Nm	160	93	33,5	15g6	96	60	61	40	57	
100 Nm	160	93	33,5	15g6	96	60	61	40	57	
250 Nm	220	93	63,5	25g6	106	70	61	40	67	
500 Nm	220	93	63,5	25g6	106	70	61	40	67	
1000 Nm	350	130	110	40g6	126	90	80	60	87	
2000 Nm	350	130	110	40g6	126	90	80	60	87	

Ball bearing							
Shaft ending	Distance K	Description	Outer diameter	Inner diameter	Max. rotation of	Load rating [kN]	
Shart ending	[mm]		[mm]	bearing [rpm]	Dyn. C	Stat.	
Ø 15 mm	82.0	E2.6202-2Z/C3	35	15	25000	7.8	3.75
Ø 25 mm	83.4	61905-2Z	42	25	18000	7.02	4.3
Ø 40 mm	114.6	6008-2Z	68	40	11000	17.8	11.6


Dimensions of ke	ey stone gro	oove (mm)		Key stone	DIN 6885		Key stone- position
Shaft ending	Width	Depth	Length	Height	Length	Number	Distance L
Ø 15 mm	5N9	3	25.5	5	25	1	130.5
Ø 25 mm	8N9	4	50.5	7	50	2	165.5
Ø 40 mm	12N9	5	90.5	8	90	2	252.0

It is recommended to tolerate the hub diameter with H7-clearance. In the situation of dynamic loads the shaft should be supported with a friction grip, a form lock or a coupling.



6. Connection Plan

Pin assignment at Sensor. Presentation: Top view

Model	Binder Series 423/723/425 Item number: 09-0132-90-12						
		os-0132-90-12 according to DIN 4710	00				
Pin	Colour	Description	Value				
Α	White	Supply voltage V _{CC}	11 V 28 V				
В	Brown	Ground GND					
С	Green	Analog Out	0 V 10 V				
D	Yellow	Analog GND					
Е	Grey	PWM / Frequency / 4-20 mA					
F	Pink	Angle Ch A /	0 V 5 V				
G	Blue	Angle Ch I	0 V 5 V				
Н	Red	Angle Ch B	0 V 5 V				
I	Black	-					
К	Violet	For internal use only	Do not connect				
L	Grey-Pink	For internal use only	Do not connect				
М	Red-Blue	Digital GND					

Torque Sensor

Series 3000 and Series 4000

7. Operating Instructions

Field of Application

The torque sensor is intended for the use in industrial applications. (e.g. test bench).

Scope of Delivery

The torque sensor set consists of the sensor itself (signal pick-up and signal processing integrated into sensor housing), one connecting cable with a soldered plug, key stones and the instruction manual.

Installation and Removal

Make sure to install the sensor shafts exactly with the proper aligned connecting shafts. The key stone adapter / square endings of the connecting shafts are to be attached forceless to the corresponding ones of the sensor. The sensor is not designed as a step bearing. No external axial or radial force should be on the housing of the sensor by fixing it. In case that the bending or radial forces could not avoided the ball bearing of the sensor must be double-checked. The allowed bearing forces are listed in (Chapter 6. Dimensions). The M4-screw threads on the side are only for fixing the sensor housing and keeping it from distortion. A maximum cable length of 5 m must not be exceeded. Using a cable or connector other than supplied by NCTE, or a similar cable that is of a different length may affect the overall performance of the sensor.

DO NOT REMOVE THE SHAFT WITH TORQUE APPLIED TO THE SENSOR.

Offset Adjustment

If required the zero point output signal (5 V) can be adjusted by pressing the Tare-button. By factory default the sensor is set to 5 V at Null torque.

Interface Description

Mechanical connection:

The key stone adapters on both ends of the measurement shaft are intended for torque transmission. Electrical connector:

On the sensor housing there is a 12-pin socket for the power supply and the signal output.(see Chapter 7. Connection Plan).

Operation (in regular case or in optimal case)

Optimal measurement parameters may be achieved when the sensor is applied in accordance to the specification. Use the sensor only for short periods of time at the maximum rotational speed. By compliance with the specification the sensor works generally trouble-free and maintenance-free.

Irregular Operation, Measures against Disturbance

The presence of external electromagnetic or magnetic fields can lead to irregular measurement results. The mechanical overload on the sensor (e.g. exceeding of maximum allowed torque or severe vibrations) may cause damage to the sensor and in consequence the incorrect signal output. In such cases the sensor must be reset (see Point 8.4 Offset Adjustment). If this does not help, do not open the sensor but contact NCTE AG directly for assistance.

Torque Sensor

Series 3000 and Series 4000

Commissioning

After sensor installation pay attention to the followings:

- •Switch on the power supply unit and check the supply voltage. Peak voltage to the sensor must be avoided! Be sure to verify the power supply voltage before connecting the sensor!
- •Connect the sensor to the power supply unit by using the delivered cable.
- •Connect the sensor output to a high-resistance device such as an A/D converter, oscilloscope, PC measurement board. The sensor should be in mechanical unloaded state while connecting it.

Tare function and error indication:

Series 3000/Series 4000 contains a LED button on the housing surface. Pressing the button will set the signal output to 5 V. The illumination of the button serves as a function / malfunction indicator.

Functional indicator:

LED off: missing power supply or sensor is damaged

LED on: Sensor is ready.

Error indicator:

LED flashes: The sensor is not ready.

Flashing of LED can have several possible causes. Various causes are interpreted through a flash code.

After each flash code the LED makes a short pause before repeating the code.

2x flashing: Magnet field sensors defective.

4x flashing: Electronics defective.

Service / Maintenance

Service-contact:

Tel.: ++49 89 66 56 19 0 Fax: ++49 89 66 56 19 29

Maintenance:

The sensor is free of maintenance, NCTE advises a yearly recalibration. The ball bearing is designed for a lifetime of 5000 h.

Disposal

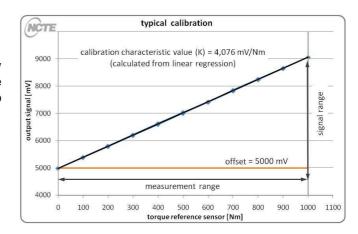
For purposes of disposal please send the device back to NCTE AG.

Handling and Transport

While handling, storing and transporting keep sensor away from magnetic and electromagnetic fields which may exceed the allowed maximum range of EMC listed in Chapter 3. Technical Characteristics of the Sensor.

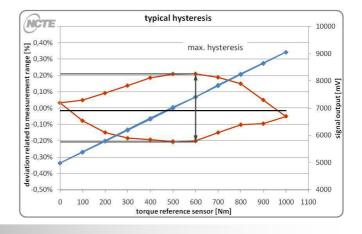
Precautions

- Do not open the sensor under any circumstances.
- Do not remove or loosen the locking rings on the shaft ends.
- The mounting nut of the socket as well as the fixing screws should not be loosened or tightened.
- Use only a separate power supply for the sensor
- Use the sensor only according to the specification (Chapter 3. Technical Characteristics of the Sensor).
- Keep the sensor away from magnetic and electromagnetic fields which may exceed the allowed maximum range of EMC (Chapter 3. Technical Characteristics of the Sensor)
- The sensor is not designed as a step bearing. The existing fixing possibilities serve exclusively for preventing the sensor from distortion.

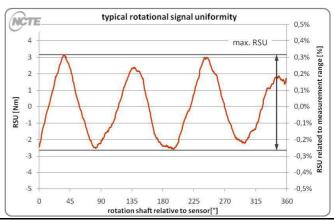


8. Calibration and Accuracy Class

The exact data about the sensor is given in the enclosed factory calibration certificate. Except the sensor type this certificate also contains the exact calibration data. Each sensor has its own calibration value which is listed in the calibration certificate as well as on the label of the sensor. The calibration certificate also shows the accuracy of each sensor. The accuracy class of an NCTE torque sensor means that the largest single deviation of all values represented in percentage is either smaller than or equal to the value listed in the accuracy class.


Calibration value:

The calibration characteristic value shows how much the output signal changes per torque. There is no difference whether the torque is directed to the left or to the right.


Hysteresis:

Hysteresis expresses the biggest difference between up- and downwards branches at one torque level in percentage.

Rotational Signal Uniformity (RSU):

RSU is a signal variation created during 360° rotation of the sensor shaft without torque. The modulation is the difference between minimal and maximal values during this single rotation. RSU is generated by small homogeneities in the magnetic field and depends mostly on the property of the sensor shaft.

9. Versions and Order Options Serie 3000

Series 3000 Accuracy 0,2%								Price			
	Optio	n 1: N	leasu	reme	ent r	ange	•				
		5 0	Nm								
	1	0 0	Nm								
	2	5 0	Nm								
	5	0 0	Nm								
	1 0	0 0	Nm								
	2 0	0 0	Nm								
			Opti	on 2	: Ang	gle s	ensor				
			0	wit	hout	angl	e sens	or			
			1	wit	h an	gle s	ensor 3	360 P / Rev. (optical)			
				Ор	tion	3: O	utput	signal ⁵			
					A a	A analog voltage output					
				5	S a	dditi	onal cu	rrent output 4-20 mA			
				F	Ра	dditi	onal P\	VM output			
								equency output 20-100 kHz			
					C	Optio		haft ends ⁶			
					-	0		ard round shaft ends with key stone			
					l L	1	Squar	e shaft ends			
							0	IP50			
							1	IP64 (without angle sensor)			
			\perp								

Exampel Modelnumber:

3000-0250-1-A-0-0

Serie 3000 - Measurement range 250 Nm - with angle sensor- analog voltage - key stone - IP50

10. Versions and Order Options Series 4000

Series 4000 Accuracy 0,1%										Price		
	Option 1: Measurement range											
		5	0 N	Nm								
	1	0	0 N	m								
	2	5	0 N	Nm								
	1 0	0 0 Nm										
	Option 2: Angle sensor											
				0	witho	without angle sensor						
				1	with a	with angle sensor 360 P / Rev. (optical)						
					Option 3: Signal output							
					Α	anal	nalog voltage output					
					S	additional current output 4-20 mA						
				Р	P additional PWM output F additional Frequency output 20-100 kHz							
											F	
						Opti	Option 4: Shaft ends ⁶					
						0	S	Stand	ard round shaft ends with key stor	ne		
					1	1 Square shaft ends						
	Option 5: Protection class											
								0	IP50			
								1	IP64 (without angle sensor)			
								•				

Exampel Modelnumber:

4000-0250-1-A-0-0

Serie 4000 - Measurement range 250 Nm - with angle sensor- analog voltage - key stone - IP50

11. Contact

SENSORES E INSTRUMENTACION GUEMISA S.L.

C\ La Fundición 4 Bis - Pl 1ª Oficina-2 28522 Rivas Vaciamadrid (Madrid) Telf. 91 764 21 00 email: ventas@guemisa.com